Haar Wavelet Solutions of Nonlinear Oscillator Equations

نویسندگان

  • Harpreet Kaur
  • R. C. Mittal
  • Vinod Mishra
چکیده

In this paper, we present a numerical scheme using uniform Haar wavelet approximation and quasilinearization process for solving some nonlinear oscillator equations. In our proposed work, quasilinearization technique is first applied through Haar wavelets to convert a nonlinear differential equation into a set of linear algebraic equations. Finally, to demonstrate the validity of the proposed method, it has been applied on three type of nonlinear oscillators namely Duffing, Van der Pol and Duffing-van der Pol. The obtained responses are presented graphically and compared with available numerical and analytical solutions found in the literature. The main advantage of uniform Haar wavelet series with quasilinearization process is that it captures the behavior of the nonlinear oscillators without any iteration. The numerical problems are considered with force and without force to check the efficiency and simple applicability of method on nonlinear oscillator problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

An Approach with Haar Wavelet Collocation Method for Numerical Simulations of Modified KdV and Modified Burgers Equations

In this paper, an efficient numerical schemes based on the Haar wavelet method are applied for finding numerical solution of nonlinear third-order modified Korteweg-de Vries (mKdV) equation as well as modified Burgers’ equations. The numerical results are then compared with the exact solutions. The accuracy of the obtained solutions is quite high even if the number of calculation points is small.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014